Visualize and analyze medical images in 3D Slicer

Csaba Pintér, PhD

CTO, EBATINCA, S.L. (Las Palmas GC)

Email: csaba.pinter@ebatinca.com
3D Slicer – Overview

- Desktop application for Windows, Mac, and Linux
- 5.0.3 released, 5.2.0 in the works
- Over 1.1 million downloads since 2011
3D Slicer – History

- Pre-Slicer BWH/GE work on volumetric software and image guided therapy
- Vision of Ron Kikinis: a unified platform to avoid reinventing the wheel
- MIT AI Lab Collaboration
 - Dave's neurosurgery thesis 1999
 - Delphine's virtual endoscopy thesis 2002
 - Lauren's tractography thesis 2006

Courtesy of Ron Kikinis, M.D.
3D Slicer – Today

- Professionally engineered
- Documented & tested
- Extensively scriptable in Python
- Based on the best software libraries
 - VTK, ITK, Qt, WebEngine, DCMTK, ...
 - Python ecosystem (numpy, PyTorch/MONAI, ...)
- Dozens of tutorials, hundreds of videos
- Very active online forum: ~16K posts / y
- Scientific publications: Over 15,000 citations on Google Scholar
- Twice a year developer project week
3D Slicer Software License

- BSD-style very permissive license
- Explicitly written for BWH / 3D Slicer goals
 - Promote multi-site collaboration
 - Encourage industry involvement
 - Allow use in medical products
- Written in 2005 after NIH workshop and consultation with legal experts
- Adopted by dozens of academic & commercial sites
- Contributor agrees
 - Applies to code and data
 - Allows re-licensing under same terms
 - No GPL "reciprocal licenses"
 - No known patent restrictions

For more information, please see:
http://www.slicer.org

This Agreement covers contributions to and downloads from the 3D Slicer project ("Slicer") maintained by The Brigham and Women's Hospital, Inc. ("Brigham"). Part A of this Agreement applies to contributions of software and/or data to Slicer (including making revisions of or additions to code and/or data already in Slicer). Part B of this Agreement applies to downloads of software and/or data from Slicer. Part C of this Agreement applies to all transactions with Slicer. If you distribute Software (as defined below) downloaded from Slicer, all of the paragraphs of Part B of this Agreement must be included with and apply to such Software.

Your contribution of software and/or data to Slicer (including prior to the date of the first publication of this Agreement, each a "Contribution") and/or downloading, copying, modifying, displaying, distributing or use of any software and/or data from Slicer (collectively, the "Software") constitutes acceptance of all of the terms and conditions of this Agreement. If you do not agree to such terms and conditions, you have no right to contribute your Contribution, or to download, copy, modify, display, distribute or use the Software.

PART A. CONTRIBUTION AGREEMENT - License to Brigham with Right to Sublicense ("Contribution Agreement").

Lawrence Rosen, Eve Waterfall, Brian Hicks

Courtesy of Ron Kikinis, M.D.
100% Open and Non-Restrictive Processes

• Public source repository: github.com/Slicer organization
 – Slicer source code and issues tracker

• Open discussion forum: discourse.slicer.org

• Weekly [developer video conferences](https://www.slicer.org) open to anyone (10am EST Tuesdays)

• Twice-yearly Project Weeks
 Next one here in Las Palmas! projectweek.na-mic.org

• "Meritocracy" to form group decisions

Courtesy of Ron Kikinis, M.D.
3D Slicer Extensions – “App Store”

- 150+ Extensions from hundreds of developers
 Independent add-ons to core platform
- Built & tested nightly for Windows, Mac, Linux
- Different styles
 - Pure Python / Pure C++ / Hybrid C++ & Python
 - Extra modules to full custom app (aka "Solution")
- Everything we provide is open source
- Anyone can build compatible extensions under preferred distribution license
Modular and Reusable

- Medical Reality Markup Language (MRML)
 - In-memory dynamic scene description
 - Event-driven
 - Serializable to XML (.mrml)
 - Medical Reality Bundle (.mrb)
- Logic implements algorithms
 - Decoupled from UI for reuse in CLI or other app
- Graphical User Interface (GUI) modifies MRML and responds to events
- Displayable Managers and Widgets map between MRML and 2D / 3D rendered views

"Lego bricks, not jigsaw puzzle pieces!"

Courtesy of Ron Kikinis, M.D.
Interoperability

- Common and research formats
 - Images (nrrd, nii.gz, ...)
 - Models (stl, ply, obj, ...)
 - Tables (csv, txt)
 - Point lists (json)
 - etc.

- DICOM
DICOM

• DICOM: Digital Imaging and Communications in Medicine
• The industry standard for storage and transfer of medical images

```plaintext
(0008,0008) CS [ORIGINAL\PRIMARY\AXIAL] # 22, 3 ImageType
(0008,0012) DA [20110922] # 8, 1 InstanceCreationDate
(0008,0013) TM [161402] # 6, 1 InstanceCreationTime
(0008,0016) UI =CTImageStorage # 26, 1 SOPClassUID
(0008,0018) UI [1.2.840.113619.2.55.3.671756986.106.1316467036.466.1] # 52, 1 SOPInstanceUID
(0008,0020) DA [20110920] # 8, 1 StudyDate
(0008,0021) DA [20110920] # 8, 1 SeriesDate
(0008,0060) CS [CT] # 2, 1 Modality
(0008,0070) LO [GE MEDICAL SYSTEMS] # 18, 1 Manufacturer
(0008,0090) PN (no value available) # 0, 0 ReferringPhysicianName
(0008,103e) LO [PELVIS CURATIVE] # 16, 1 SeriesDescription
(0010,0010) PN [RANDO^PROSTATE] # 14, 1 PatientName
(0010,0020) LO [TEST PHYS PROSTATE] # 18, 1 PatientID

…
(0020,0032) DS [-250\-250\105] # 14, 3 ImagePositionPatient
(0020,0037) DS [\0.0\0.0\0.0\0.0\0.0] # 20, 6 ImageOrientationPatient

…
(0028,0010) US 512 # 2, 1 Rows
(0028,0011) US 512 # 2, 1 Columns
(0028,0030) DS [9.76562e-1\9.76562e-1] # 22, 2 PixelSpacing
(0028,0010) US 16 # 2, 1 BitsAllocated
(0028,0011) US 16 # 2, 1 BitsStored
(0028,0012) US 15 # 2, 1 HighBit
(0028,0013) US 0 # 2, 1 PixelRepresentation
(7fe0,0010) OW 0018\0018\0018\0018\0018\0018\0018\0018\0018... # 524288, 1 PixelData
```
Modalities

• Image
 – Common: CT, MR, US, PET, ...
 – 4D Ultrasound

• Segmentation: SEG

• Structured report: SR

• Radiation therapy
 – Dose: RTDOSE
 – Structure set: RTSTRUCT
 – Plan: RTPLAN
 – Planar image: RTIMAGE
DICOM via DICOMweb

- DICOM Standard for web-based medical imaging
- RESTful API services
DICOM via Kheops

- Web-based DICOM database management
- Slicer plugin: download and open in Slicer
Features: Visualization

1. 2D (slice) and 3D views, chart views
2. Configurable layout
3. Multi-modality image fusion (foreground, background, label map)
4. Transforms, vector and tensor field visualization
5. Surface and volume rendering
6. Time sequence data
Features: Registration

- Manual: translation, rotation in 3D
- Automatic: rigid, deformable, with various similarity metrics, initialization methods, optimizers, masking, etc.
- Extensions: structure-based registration, Elastix, etc.
Features: Segmentation

• Also known as contouring
• Delineates structures of interest
 – Manual contouring: slow
 – Semi-automatic: some interaction
 – Automatic: still needs editing
• Omnipresent in medical imaging
 – Surgical/radiation therapy **planning**
 – Intra-surgery **navigation**
 – Volume/shape **analysis**
 – 3D printing (**interventions**)
 – **Education**
Representing Segmentations

• Each optimal for
 • *either* storage (D)
 • *or* analysis (A,C)
 • *or* visualization (B,E)

• Imposed needs
 • Conversion
 • Simultaneous
 – Visualization
 – Transformation
Segment Editor

- Overlapping structures
- Real-time 3D surface visualization
- Direct file export (e.g. for 3D printing)
- Control over geometry
- Advanced masking options
- Standard medical terminologies
- Unique editing tools
Segment Editor: Example Workflow
Segment Editor: Simple Manual Tools

- Paint
- Erase
- Draw
- Scissors
Segment Editor: Semi-Automated Tools

- Threshold
- Fill between slices
- Level tracing
- Grow from seeds
Segment Editor: Fully Automated (AI)

MONAI Label – Multi-label DeepEdit method

• Integrated in 3D Slicer already
• Training possible starting 5 segmented image per structure
• Large GPU needed for training (cloud option available via e.g. Amazon)

Díaz-Pinto, MICCAI 2022
Translational medical R&D

Bench
- Can it be done?
- Gov’t grants
- Not robust

Bedside
- Patient ready
- For-profit companies
- Closed source

“Valley of death”: Gap between funding models

Nature 453, 840-842 (2008) | doi:10.1038/453840a
Building on a platform

LINES OF SOURCE CODE - ILLUSTRATED THROUGH LUMPNAV
(NAVIGATION SOFTWARE FOR BREAST CANCER SURGERY)

- Qt 29.2%
- VTK 27.6%
- Python 9.9%
- Numpy 6.8%
- DCMTK 5.2%
- ITK 13.1%
- 3DSlicer core 3.5%
- SlicerIGT 1.6%
- BrainsTools ext 1.3%
- CTK 1.7%
- Plus toolkit 1.4%
- SlicerIGT ext 0.2%
- LumpNav ext 0.01%
Appendix
3D Slicer – Overview

- Medical image computing platform: import/export, visualization, segmentation, registration, quantification, real-time guidance
- Application framework: customizable, extensible custom modules
- Completely free (BSD)
 - Built from $$$ OPM
- Multi-platform (Windows, Linux, MacOS)
- User and developer support
- Training courses, documentation, tutorials

Many devices – one application

- Hardware abstraction
- Visualization / Analysis

- Local
- Ethernet
- Wi-Fi

data transfer protocol

all sorts of devices
Intra-op. contouring & navigation for breast surgery

Source: Queen’s University
Example: Central Line Tutor
TrainUS platform
Example: Craniosynostosis collaborative VR
Augmented reality

REALITY

ULTRASOUND PROBE

AUGMENTED REALITY

TUMORS