## IUCLouvain



## Minimal FHIR server for medical imaging



## Minimal FHIR server for medical imaging



## Minimal FHIR server for medical imaging



For imaging studies:

- Patient
- ImagingStudy

For DICOM worklists:

- ServiceRequest
- Task
$\rightarrow$ GNU Health as a RIS?


## A brief overview of ImagingStudy

## Name

| ImagingStudy | TU |  | DomainResource |
| :---: | :---: | :---: | :---: |
| - © identifier | $\Sigma$ | 0..* | Identifier |
| -1] status | ?! $\Sigma$ | $1 . .1$ | code |
| -. ${ }_{\text {- }}$ modality | $\Sigma$ | 0..* | CodeableConcept |
| - ¢ ${ }^{\text {® }}$ subject | $\Sigma$ | $1 . .1$ | Reference(Patient \| Device | <br> Group) |
| - ¢ ${ }^{\text {a }}$ encounter | $\Sigma$ | $0 . .1$ | Reference(Encounter) |
| -1] started | $\Sigma$ | $0 . .1$ | dateTime |
| - ¢ basedOn | $\Sigma$ | 0..* | Reference(CarePlan I <br> ServiceRequest \| Appointment | <br> AppointmentResponse \\| Task) |
| - ¢ partof | $\Sigma$ | 0..* | Reference(Procedure) |
|  | $\Sigma$ | $0 . .1$ | Reference(Practitioner \| PractitionerRole) |
| - ¢ endpoint | $\Sigma$ | 0..* | Reference(Endpoint) |
| - $\square$ numberOfSeries | $\Sigma$ | $0 . .1$ | unsignedInt |
| -- $\square$ numberOfInstances | $\Sigma$ | $0 . .1$ | unsignedInt |
| - 【 ${ }^{\text {® }}$ procedure | $\Sigma$ | 0..* | CodeableReference(PlanDefinition \| ActivityDefinition) |
| - ¢ ${ }^{\text {a }}$ location | $\Sigma$ | $0 . .1$ | Reference(Location) |
| - ¢ reason | $\Sigma$ | 0..* | CodeableReference(Condition I Observation \| DiagnosticReport | DocumentReference) |
| - © note | $\Sigma$ | 0..* | Annotation |

## Description \& Constraints

A set of images produced in single study (one or more series of references images)
Elements defined in Ancestors: id, meta, implicitRules, language, text, contained, extension, modifierExtension
Identifiers for the whole study
registered | available | cancelled | entered-in-error | unknown
Binding: Imaging Study Status (Required)

All of the distinct values for series' modalities Binding: Modality |  |
| :---: |
| ¹ |
| (Extensible) |

Who or what is the subject of the study
Encounter with which this imaging study is associated
When the study was started
Request fulfilled

Part of referenced event
Referring physician
Study access endpoint
Number of Study Related Series
Number of Study Related Instances

## The performed procedure or code

Binding: ImagingProcedureCode |  |
| :---: |
|  |
| (Preferred) |

## Where ImagingStudy occurred

Why the study was requested / performed Binding: Procedure Reason Codes (Example)

User-defined comments

## A brief overview of ImagingStudy

|  | Flags Card. Type | Description \& Constraints |
| :--- | :--- | :--- | :--- | :--- |
| Name |  | A set of images produced in single study (one or more series of references images) |

## A brief overview of ImagingStudy



## A brief overview of ImagingStudy



## Orthanc supports DICOMweb, but what about FHIR?



- HAPI provides the most up-to-date free and open-source FHIR server
- HAPI is written in pure Java (whereas Orthanc is written in C++)
- HAPI server exists in 2 versions: Standalone ("JPA") or library ("plain")


## Architecture 1: Continuous synchronization



## Architecture 1: Continuous synchronization



## Architecture 1: Continuous synchronization



Difficulty: Keep things in sync at any time

## Architecture 2: Use HAPI "plain" server

Process 1


Difficulty: Two different processes, two Web servers (but globally acceptable if Docker Compose available)

## Architecture 3: Make HAPI a plugin to Orthanc

Process 1


Advantage: Easy to deploy for non-technical audience

## Architecture 3: Make HAPI a plugin to Orthanc

Process 1


Advantage: Easy to deploy for non-technical audience

## Architecture 3: Make HAPI a plugin to Orthanc

Process 1


Advantage: Easy to deploy for non-technical audience
Java plugin is about to be released!
(similar to Python plugin)
$\square$ UCLouvain

