
PyOrthanc
A Python client for the Orthanc REST API

Gabriel Couture1 Yannick Lemaréchal1 Philippe Després1

1Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval

Orthanc Conference 2023, 1 October 2023

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 1 / 28

PyOrthanc
A Python client for the Orthanc REST API

Gabriel Couture1 Yannick Lemaréchal1 Philippe Després1

1Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec-Université Laval

Orthanc Conference 2023, 1 October 2023

2
0
2
3
-0
9
-2
5

PyOrthanc

Hello, today I will present the PyOrthanc library, which is a Python client that interacts with the

Orthanc REST API.

Introduction

Orthanc is used around the world in both clinical and research contexts

Orthanc stands out by its REST API
Allows users to programmatically interact with Orthanc
Can be difficult or simply tedious

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 2 / 28

Introduction

Orthanc is used around the world in both clinical and research contexts

Orthanc stands out by its REST API
Allows users to programmatically interact with Orthanc
Can be difficult or simply tedious

2
0
2
3
-0
9
-2
5

PyOrthanc

Introduction

Orthanc is used around the world in both clinical and research contexts.

Orthanc stands out among the open-source DICOM servers with its REST API, which has many
interesting functionalities and allows users to interact programmatically with it.

However using the REST API may be difficult for people without a programming background or

it can involve a lot of boilerplate.

Goal

Communication to the Orthanc REST API is often done with Python.

Goal

Facilitate the interactions with the Orthanc REST API from Python.

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 3 / 28

Goal

Communication to the Orthanc REST API is often done with Python.

Goal

Facilitate the interactions with the Orthanc REST API from Python.2
0
2
3
-0
9
-2
5

PyOrthanc

Goal

A very common way to interact with Orthanc is from Python. When I started PyOrthanc, there
was not really any complete Python library to interact with the REST API.

I decided to create one and my goal was to facilitate the interaction with the Orthanc REST

API from Python, for both users who are not used to REST APIs and experienced users who

simply want a straightforward way to do things.

Creation of PyOrthanc

There’s a openapi specification (https://api.orthanc-server.com, yay!)

So let’s generate pragmatically the client

There are many solutions to generate a client (e.g. OpenAPI-Generator)

I use simple-openapi-client because I wanted something simple
I ended up with a single Python class, Orthanc, that cover every route of the REST API

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 4 / 28

Creation of PyOrthanc

There’s a openapi specification (https://api.orthanc-server.com, yay!)

So let’s generate pragmatically the client

There are many solutions to generate a client (e.g. OpenAPI-Generator)

I use simple-openapi-client because I wanted something simple
I ended up with a single Python class, Orthanc, that cover every route of the REST API2

0
2
3
-0
9
-2
5

PyOrthanc
Creation of PyOrthanc

Creation of PyOrthanc

In the first version, everything was done by hand. However, at some point, the Orthanc team
released an openAPI specification with which I was able to programmatically generate a Client.

There are many solutions to do that. I use the simple-openapi-client which simply generates a
Python class.

I ended up with the Python class Orthanc, which cover every route of the REST API.

https://api.orthanc-server.com
https://api.orthanc-server.com

The PyOrthanc library architecture

The Orthanc class is the core of PyOrthanc.

There are many ways to interact with

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 5 / 28

The PyOrthanc library architecture

The Orthanc class is the core of PyOrthanc.

There are many ways to interact with

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

The PyOrthanc library architecture

This is the basic architecture of the library. You can see that the pyorthanc.Orthanc class is the

core of the library.

Pretty much all utility functions or classes are built onto it.

The Client

The Orthanc class exposes all ORTHANC REST API routes.

The Orthanc client

import pyorthanc

client = pyorthanc.Orthanc(

url='http://localhost:8042',

username='orthanc', # Optional

password='orthanc', # Optional

timeout=100, # Optional

headers=..., # Optional

...

)

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 6 / 28

The Client

The Orthanc class exposes all ORTHANC REST API routes.

The Orthanc client

import pyorthanc

client = pyorthanc.Orthanc(

url='http://localhost:8042',

username='orthanc', # Optional

password='orthanc', # Optional

timeout=100, # Optional

headers=..., # Optional

...

)

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

The Client

Creating a client instance is as simple as this.

You have to provide the URL, username and password, and if you like additional HTTP-

related parameters such as the timeout.

The Client

Then we can use the client as we want

Orthanc patient Getters

GET /patients

client.get_patients() # ['0946fcb6-cf12ab43-bad958c1-bf057ad5-0fc6f54c', ...]

GET /patients/{id}

client.get_patients_id('0946fcb6-cf12ab43-bad958c1-bf057ad5-0fc6f54c')

Load DICOM instances

POST /instances

with open('./path.dcm', 'rb') as file:

client.post_instances(file.read())

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 7 / 28

The Client

Then we can use the client as we want

Orthanc patient Getters

GET /patients

client.get_patients() # ['0946fcb6-cf12ab43-bad958c1-bf057ad5-0fc6f54c', ...]

GET /patients/{id}

client.get_patients_id('0946fcb6-cf12ab43-bad958c1-bf057ad5-0fc6f54c')

Load DICOM instances

POST /instances

with open('./path.dcm', 'rb') as file:

client.post_instances(file.read())2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

The Client

This is a very basic showcase of few methods.

As you can see, the client methods that start with ”get” make an HTTP GET call, and it is the
same thing with the post, delete and put methods.

Here I retrieve the Orthanc Patient IDs and then I retrieve the information of a specific patient

with HTTP GET calls. I also load a new instance into Orthanc with HTTP POST call to

/instances.

Interact with modalities

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 8 / 28

Interact with modalities

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Interact with modalities

A very common use case for us when using Orthanc is to interact with other DICOM servers.

So it was one of the first things that we implemented.

Modalities

Find the modalities

modality_names = client.get_modalities()

modality_names # ['MY_MODALITY']

With the modality name, we can create a Modality object

Create a Modality object

modality = pyorthanc.Modality(client, 'MY_MODALITY')

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 9 / 28

Modalities

Find the modalities

modality_names = client.get_modalities()

modality_names # ['MY_MODALITY']

With the modality name, we can create a Modality object

Create a Modality object

modality = pyorthanc.Modality(client, 'MY_MODALITY')2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Modalities

You can retrieve the connected modalities with the client, which are essentially other DICOM

servers.

For example, my research PACS which is an Orthanc server is connected to the MY

MODALITY, which is a clinical PACS.

With the Modality name, we can create a Modality object that facilitates the interac-

tion between Orthanc and the modality.

C-ECHO and C-FIND

Common workflow to interact with a modality

C-ECHO

modality.echo() # True if success, False if not.

C-FIND

modality.query(

{'Level': 'Study', 'Query': {'StudyDescription': 'Something*'}}

)

C-MOVE

modality.move('<query_id>', {'TargetAet': 'MY_PACS'})

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 10 / 28

C-ECHO and C-FIND

Common workflow to interact with a modality

C-ECHO

modality.echo() # True if success, False if not.

C-FIND

modality.query(

{'Level': 'Study', 'Query': {'StudyDescription': 'Something*'}}

)

C-MOVE

modality.move('<query_id>', {'TargetAet': 'MY_PACS'})2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

C-ECHO and C-FIND

The modality object allows you to perform the common DICOM operations, such as C-Echo,

C-Find and C-Move.

The C-Echo will return True or False depending on the success of the connection be-

tween Orthanc and the modality.

The C-Find will ask Orthanc to make a query on the Modality. Then Orthanc will have

the query result.

The C-Move will ask Orthanc to ask the Modality to send a copy of the data that fits

the query to a target modality, which could be the Orthanc server itself or another PACS.

Finding resources

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 11 / 28

Finding resources

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Finding resources

We also add some utility functions and classes to query the local data on Orthanc.

Finding resources

With PyOrthanc, it is easy to find local resources.

Find patients

patients = pyorthanc.find_patients(

client=client,

query={'PatientID': '*'},

labels=['MY_LABEL']

)

patients # List[pyorthanc.Patient]

This calls the /tools/find route multiple times and accumulates the results. By default,
each call is limited to 1,000 reported resources.

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 12 / 28

Finding resources

With PyOrthanc, it is easy to find local resources.

Find patients

patients = pyorthanc.find_patients(

client=client,

query={'PatientID': '*'},

labels=['MY_LABEL']

)

patients # List[pyorthanc.Patient]

This calls the /tools/find route multiple times and accumulates the results. By default,
each call is limited to 1,000 reported resources.2

0
2
3
-0
9
-2
5

PyOrthanc
Usage

Finding resources

For example, you can easily find patients with the find patients function.

You simply have to provide a query and/or a list of labels that fit the patients that you

are looking for.

A great thing about this function is that, by default, it calls Orthanc many times to ac-

cumulate the results. It limits each call to 1,000 reported resources. This is very handy for large

Orthanc servers. If you don’t want to do that, you can always use a lower-level function called

query orthanc.

Finding resources

Each level of resources can be queried.

Find specific resources

patients = pyorthanc.find_patients(...)

studies = pyorthanc.find_studies(...)

series = pyorthanc.find_series(...)

instances = pyorthanc.find_instances(...)

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 13 / 28

Finding resources

Each level of resources can be queried.

Find specific resources

patients = pyorthanc.find_patients(...)

studies = pyorthanc.find_studies(...)

series = pyorthanc.find_series(...)

instances = pyorthanc.find_instances(...)

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Finding resources

In the same spirit, every resource level has its own function.

Access resource data

The Patient object

patient = pyorthanc.Patient(

id_='<orthanc-patient-id>',

client=client

)

All MainDicomTags are accessible through the Patient attributes.

Patient’s attributes

patient.name

patient.patient_id

patient.birth_date # datetime object

...

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 14 / 28

Access resource data

The Patient object

patient = pyorthanc.Patient(

id_='<orthanc-patient-id>',

client=client

)

All MainDicomTags are accessible through the Patient attributes.

Patient’s attributes

patient.name

patient.patient_id

patient.birth_date # datetime object

...2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Access resource data

Once you have your resources in pyorthanc objects, it is very easy to retrieve their metadata.

For example, the patient object makes every MainDicomTags accessible as attributes

that return Python objects, such as a datetime object for the birth date.

Each access to the attributes will make an HTTP call to Orthanc. There is also a way

to query Orthanc a single time when creating a patient and keep a local version of the data,

with the risk that it will not be up to date.

Access resource data

It is also possible to access the resource metadata.

Patient’s Metadata

patient.is_stable # True or False

patient.last_update # datetime object

patient.labels # Labels

patient.protected # True or False

patient.protected = True # To set protected

...

Patient’s studies

for study in patient.studies

study # pyorthanc.Study

study.uid

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 15 / 28

Access resource data

It is also possible to access the resource metadata.

Patient’s Metadata

patient.is_stable # True or False

patient.last_update # datetime object

patient.labels # Labels

patient.protected # True or False

patient.protected = True # To set protected

...

Patient’s studies

for study in patient.studies

study # pyorthanc.Study

study.uid2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Access resource data

Metadata not related to DICOM are also accessible through attributes, such as the stability or

update status, the labels or if the patient is protected.

The patient studies are also easily accessible.

Note that there are resource classes for every resource level, which are the patient,

study, series and instance.

Patient zip and pydicom Dataset

To download the patient zip file that contains all patient’s DICOM files.

Download zip

zip_data = patient.get_zip()

with open('./path/patient.zip', 'wb') as file:

file.write(zip_data)

To have the instance as a pydicom.Dataset, it is as easy as

Get pydicom.DataSet

ds = instance.get_pydicom()

ds.PatientName, ds.Modality, ...

ds.PixelData

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 16 / 28

Patient zip and pydicom Dataset

To download the patient zip file that contains all patient’s DICOM files.

Download zip

zip_data = patient.get_zip()

with open('./path/patient.zip', 'wb') as file:

file.write(zip_data)

To have the instance as a pydicom.Dataset, it is as easy as

Get pydicom.DataSet

ds = instance.get_pydicom()

ds.PatientName, ds.Modality, ...

ds.PixelData2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Patient zip and pydicom Dataset

The resource objects also have handy methods. For example, to retrieve all the data from one

patient, you can retrieve it as a zip file, and then save it locally.

Another interesting example is with the Instance object, with which you can retrieve and

serialize a pydicom Dataset in a single method call.

Anonymize/modify resources

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 17 / 28

Anonymize/modify resources

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Anonymize/modify resources

PyOrthanc allows you to use the Orthanc functionalities to anonymize and modify data, which

are very interesting functionalities of Orthanc.

Anonymize a patient

It is possible to anonymize resources with the Orthanc anonymization capabilities.

Anonymization

new_patient = patient.anonymize()

new_patient = patient.anonymize(

keep=['PatientName'],

replace={'PatientID': 'TheNewPatientID'},

force=True # Needed since we change 'PatientID'

)

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 18 / 28

Anonymize a patient

It is possible to anonymize resources with the Orthanc anonymization capabilities.

Anonymization

new_patient = patient.anonymize()

new_patient = patient.anonymize(

keep=['PatientName'],

replace={'PatientID': 'TheNewPatientID'},

force=True # Needed since we change 'PatientID'

)

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Anonymize a patient

For example, here we can create a new anonymized patient with a single call that will return a

new patient. The method also gives control over the anonymization options.

Modify a patient

We can modify resources as well.

Modification

patient.modify(replace={'PatientName': 'new-name'})

patient.name # 'new-name'

This creates a new patient since we change the PatientID

new_patient = patient.modify(

replace={'PatientID': 'TheNewPatientID'},

force=True # Needed since we change 'PatientID'

)

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 19 / 28

Modify a patient

We can modify resources as well.

Modification

patient.modify(replace={'PatientName': 'new-name'})

patient.name # 'new-name'

This creates a new patient since we change the PatientID

new_patient = patient.modify(

replace={'PatientID': 'TheNewPatientID'},

force=True # Needed since we change 'PatientID'

)

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Modify a patient

It is pretty much the same thing for the Modify functionality.

Here I modify a patient in place, and I also modify a PatientID, which creates a new

patient instance.

Other Resources

Similar methods are available for the other resources.

Resources methods

study.anonymize(), series.anonymize(), instance.anonymize()

study.modify(), series.modify(), instance.modify()

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 20 / 28

Other Resources

Similar methods are available for the other resources.

Resources methods

study.anonymize(), series.anonymize(), instance.anonymize()

study.modify(), series.modify(), instance.modify()

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Other Resources

Note that the other resource levels has the same methods.

Jobs

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 21 / 28

Jobs

2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Jobs

Another important aspect of Orthanc is the jobs. Many long processes are handled with this.

PyOrthanc also provides a utility class to deal with that.

Jobs

The Job objects

job = pyorthanc.Job('<job_id>', client)

job.state # 'Failure', 'Running', 'Pending', ...

Wait until completion

job.wait_until_completion()

Job info

job.creation_time, job.progress

job.completion_time, effective_runtime, ...

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 22 / 28

Jobs

The Job objects

job = pyorthanc.Job('<job_id>', client)

job.state # 'Failure', 'Running', 'Pending', ...

Wait until completion

job.wait_until_completion()

Job info

job.creation_time, job.progress

job.completion_time, effective_runtime, ...2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Jobs

For jobs in Orthanc, you can create a Job object with the Job ID.

The Job object is quite handy to follow the state of a job. For example, you could

start a couple of jobs and follow their progress with the state attribute in a while loop. You

could also just wait for the completion of the job with the wait until completion method, which

blocks the Python interpreter until the job is note running or pending.

The Job object also has a couple of interesting attributes, such as the completion time

or the effective run time.

Anonymize and modify as Job

We can anonymize and modify as job.

Anonymize as job

job = patient.anonymize_as_job()

job.wait_until_completion()

new_patient = Patient(job.content['ID'], client)

Modify as job

job = patient.modify_as_job(replace={'PatientName': 'new-name'})

job.wait_until_completion()

patient.name # 'new-name'

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 23 / 28

Anonymize and modify as Job

We can anonymize and modify as job.

Anonymize as job

job = patient.anonymize_as_job()

job.wait_until_completion()

new_patient = Patient(job.content['ID'], client)

Modify as job

job = patient.modify_as_job(replace={'PatientName': 'new-name'})

job.wait_until_completion()

patient.name # 'new-name'2
0
2
3
-0
9
-2
5

PyOrthanc
Usage

Anonymize and modify as Job

A common way to use jobs is when anonymizing or modifying large patients.

It is usually a good idea to run those processes in a job which can be launched with

the anonymize as job or modify as job methods.

Those methods return job objects which will contain the new patient ID once done.

Use Case

For one of our projects:

We needed to transfer mammogram exams for research purposes

The data were from 6 clinics

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 24 / 28

Use Case

For one of our projects:

We needed to transfer mammogram exams for research purposes

The data were from 6 clinics

2
0
2
3
-0
9
-2
5

PyOrthanc
Use Cases

Use Case

I will briefly present a use case where we use PyOrthanc with success.

We had a project where we needed to transfer mammogram exams from a clinical envi-

ronment to a research environment.

We actually needed to transfer data from 6 clinics to our research PACS, which was an

Orthanc server.

Finding the desired data

From PyOrthanc, it is easy to request a C-Find on a target PACS

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 25 / 28

Finding the desired data

From PyOrthanc, it is easy to request a C-Find on a target PACS

2
0
2
3
-0
9
-2
5

PyOrthanc
Use Cases

Finding the desired data

Our workflow was to use the Modality object from PyOrthanc to make C-Find requests.

We built our queries from a list of participants to the research project.

As you can see, from Python we can ask an Orthanc Server to perform the C-Find re-

quests to another PACS.

We can then review the results.

Move the data to the desired Orthanc

With the C-Find query response, we then request a C-Move

Transferred 45,000+ mammogram exams from 6 clinics

500-800 exams per night

PyOrthanc was a big help

Source code: https://github.com/ylemarechal/dicom-transfer

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 26 / 28

Move the data to the desired Orthanc

With the C-Find query response, we then request a C-Move

Transferred 45,000+ mammogram exams from 6 clinics

500-800 exams per night

PyOrthanc was a big help

Source code: https://github.com/ylemarechal/dicom-transfer

2
0
2
3
-0
9
-2
5

PyOrthanc
Use Cases

Move the data to the desired Orthanc

With the C-Find results, we then performed C-Move to transfer the data on our research PACS,

which was another Orthanc server.

We were able to transfer more than 45,000 exams from 6 clinics at more than 500 per

night.

PyOrthanc made this project quite straightforward.

https://github.com/ylemarechal/dicom-transfer
https://github.com/ylemarechal/dicom-transfer

Wrapping up

PyOrthanc facilitates the interaction with Orthanc from Python.

Documentation: https://gacou54.github.io/pyorthanc/

Github page: https://github.com/gacou54/pyorthanc

PyPi: https://pypi.org/project/pyorthanc/

Citation: https://doi.org/10.5281/zenodo.3387552

pip install pyorthanc

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 27 / 28

Wrapping up

PyOrthanc facilitates the interaction with Orthanc from Python.

Documentation: https://gacou54.github.io/pyorthanc/

Github page: https://github.com/gacou54/pyorthanc

PyPi: https://pypi.org/project/pyorthanc/

Citation: https://doi.org/10.5281/zenodo.3387552

pip install pyorthanc

2
0
2
3
-0
9
-2
5

PyOrthanc
Conclusion

Wrapping up

In conclusion, we find that PyOrthanc was a handy library that facilitates the interaction with

Orthanc from Python. We hope that you find it useful too.

The documentation, GitHub, PyPi and citation links are all here.

You can install it with a simple pip install pyorthanc.

https://gacou54.github.io/pyorthanc/
https://github.com/gacou54/pyorthanc
https://pypi.org/project/pyorthanc/
https://doi.org/10.5281/zenodo.3387552
https://gacou54.github.io/pyorthanc/
https://github.com/gacou54/pyorthanc
https://pypi.org/project/pyorthanc/
https://doi.org/10.5281/zenodo.3387552

Future Development

Future development:

Add an Orthanc SDK mock when developing with the Python plugin

This will provide autocomplete/linting

Improve documentation

Improve the Modality class

Couture, Lemaréchal, Després (UL) PyOrthanc Orthanc conf 2023 28 / 28

Future Development

Future development:

Add an Orthanc SDK mock when developing with the Python plugin

This will provide autocomplete/linting

Improve documentation

Improve the Modality class

2
0
2
3
-0
9
-2
5

PyOrthanc
Conclusion

Future Development

And finally, for future development, we hope to implement an Orthanc SDK mock for the
Python plugin. This would ease the development with the Python plugin with nice autocomplete
and linting.

We also want to improve the documentation and the Modality class.

Thank you

	Creation of PyOrthanc
	Usage
	Use Cases
	Conclusion

